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Abstract—Methods developed for normal 2D text detection do 

not work well for text that is rendered using decorative, 3D effects, 

etc. This paper proposes a new method for classification of 2D and 

3D natural scene text images so that an appropriate recognition 

method can be chosen accordingly based on the classification 

results for better performance. The proposed method explores 

local gradient differences for obtaining candidate pixels, which 

represent a stroke. To study the spatial distribution of candidate 

pixels, we propose a measure, called COLD, which is denser for 

pixels toward the center of strokes and scattered for non-stroke 

pixels. This observation leads us to introduce mass features for 

extracting the regular spatial pattern of COLD, which indicates a 

2D text image. The extracted features are fed into a Neural 

Network (NN) for classification. The proposed method is tested on 

(i) a new dataset introduced in this work (ii) a second dataset 

assembled from standard natural scene datasets (iii) Non-Text 

Image datasets which does not contain text, rather it contains 

objects. Experimental results of the proposed method on images 

with text and non-text show that the proposed method is 

independent of text. The proposed approach improves text 

detection and recognition performance significantly after 

classification.  

Keywords—Gradient, edges, Strokes Cold, Text detection, 2D-3D 

image classification  

I.  INTRODUCTION  

Text detection and recognition in natural scene images and 
videos has received substantial attention from researchers 
because of the potential for real-world applications, such as 
navigation for autonomous vehicles and assisting tourists in 
understanding local-language signage via Optical Character 
Recognition (OCR) on their mobile phones. The field has 
matured and there are powerful methods for addressing many of 
its challenges. For example, the methods proposed in [1-7] 
address the challenges of arbitrarily-shaped text lines, text 
detection from multiple views, bib number detection in 
marathon images, text detection in blurred and non-blurred 
scene images, text detection and recognition in web videos, and 
text detection in images affected by perspective distortion.   

One can understand from the above methods that the 
approaches work well for the images having 2D text. But in 
reality, it is common that images can contain 3D text due to 3D 
movies and 3D video. If the image contains text with shadow 
and effect of depth information, it is considered as 3D image else 
it is considered as 2D image. The methods proposed for 2D text 
images may not perform well for 3D text images due to the 

presence of shadow and decorative characters of the 3D effect. 
Therefore, there is a dearth for text detection in 3D video and 
naturals scene images. The reason is that due to the presence of 
shadows and depth information in the image, we can expect a 
loss of character shapes. It is evident from the sample results 
shown in Fig. 1, where it can be seen that the text detection 
method called PSENet [1], works well for the 2D image while it 
does not detect text in the 3D image as shown in Fig. 1(a).  

 

Therefore, we modify the same method [1] to train on 
individual classes of 2D and 3D images for detecting text in 2D 
and 3D images as shown in Fig. 1(b), where it is noted that the 
modified method performs well for both 2D and 3D images. It 
has motivated us to propose a new classification method for 
classifying 2D and 3D images such that text detection and 
recognition performance improves for both 2D and 3D images. 
In the same way, one can think of developing one separate 
method for 3D text detection by taking the advantage of 2D and 
3D image classification to achieve better results instead of 
modifying existing methods. Since developing a universal 
method for handling challenges of both 2D and 3D images is 
hard, this work proposes the classification of 2D and 3D images.   

II. RELATED WORK 

As discussed in the introduction, most existing methods focus 
on 2D text images. Liu et al. [8] proposed a unified network for 

(b) Text detection by PSEnet method [1] in 2D and 3D text images after 
classification.  

Fig. 1. Text detection performance before and after classification of 2D 

and 3D images  

 

(a) Text detection by PSEnet method [1] in 2D and 3D text images before 

classification.    
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text spotting in natural scene images. It aims at combining text 
detection and recognition by designing a single network for 
achieving better results. Li et al. [1] introduced a progressive 
scale expansion network for robust text detection in natural 
scene images. The method focuses on addressing the challenge 
of fixing bounding boxes for arbitrarily shaped text. Xu et al. 
[9] proposed a deep directional field for irregular text detection 
in natural scene images. To find a solution to arbitrary 
orientation and shaped text, the method explores direction 
information through a deep network. Raghunandan et al. [10] 
proposed a bit plane based method for text detection in a natural 
scene, video, and born-digital images. The method uses convex 
and concave deficiencies for identifying candidate bit plane and 
then the same plane is used for text detection. Villamizar et al. 
[11] explored a multi-scale sequential network for text 
detection in natural scene images. 

The method works based on classifying text into different 
classes according to semantics. To achieve this, the method 
explores the deep learning model. Roy et al. [2] proposed a 
method for text detection in multi-view of scenes by exploring 
Delaunay triangulation and its characteristics. The goal of this 
method is to address the challenges of the same text in different 
views. It extracts features using Delaunay triangulation and 
uses similarity measures for achieving the results. Wang et al. 
[12] use the two-state network for text detection in natural scene 
images. It fixes a quadrilateral boundary for the text to solve the 
issue of arbitrary shape text. Liao et al. [13] proposed 
differentiable binarization for text detection in natural scene 
images. It fixes the automatic threshold for binarization to 
improve text detection performance.  

From the above review, it is noted that though the methods 
explored deep learning models in a different way for addressing 
challenges of text detection. The approaches do not consider 3D 
images for text detection. Therefore, there are two ways of 
finding a solution to the text detection in 3D images. (i) 
Classifying the 2D and 3D images such that an appropriate 
method can be used to improve text detection performance. (ii) 
Developing a unified or universal method for detecting text in 
both 2D and 3D images. In this work, we choose former one 
because developing a generalized method is not advisable, at 
the same time, we can make use of existing methods by 
modifying to detect text in 3D images. Hence, this work aims 
at proposing a new method for the classification of 2D and 3D 
images.  

However, there is an attempt to classify 2D and 3D texts. 
Xu et al. [14] where a method for multi-oriented graphics-scene 
3D text classification in the video is proposed. The method 
explores the medial axis points of a character for classifying 2D 
and 3D texts in the video. Zhong et al. [15] proposed to use 
shadow detection for 3D text classification. The approach fixes 
some thresholds for detecting shadow pixels to estimate the 
depth of the 3D text information. However, the scope of the 
above method is limited to detected text but not images. With 
the same objective, Nandanwar et al. [16] proposed a method 
for 2D and 3D text classification based on common point 
detection. The method explores Gradient Vector Flow (GVF) 
to find common points for text and its shadow, and then 
statistical features of common points are used for classification. 
This work is confined to detected text but not full images 

containing 2D and 3D texts as our work. On the other hand, 
since the objective of the above methods is to improve text 
recognition performance through classification, which is same 
as the proposed work, inspired us to propose a method for 
classifying images containing 2D and 3D images in this work.  

III. THE PROPOSED METHOD  

For the image containing 2D text, one can expect regularity in 
stroke width distances because it is true that the stroke width of 
characters in the text is almost same [16], while for the image 
containing 3D text, it does not due to the presence of shadow, 
decorative characters using depth information. This observation 
motivated us to detect candidate pixels in the images and 
distances between the candidate pixels. Inspired by the work 
[17], where the local resultant force has been introduced to 
detect the boundary point of the objects in the medical images, 
we explore the same concept by considering gradient difference 
rather than direction information for detecting candidate points 
in the images. Since the stroke width of the characters in the 2D 
text shares the same spatial proximity, it is expected dense 
cluster at center in polar domain, while scattered clusters for 3D 
text in the images.  

Motivated by the method called COLD (cloud of line 
distribution), [18] which was developed for the problem of 
writer identification using handwriting and is being adapted here 
to the classification of 2D and 3D text images. To extract the 
above observation, we propose to extract mass features [19] 
from the cold distribution. The reason to extract the mass 
features is that the probability of the pixels which share the same 
distances is higher than the pixels which have arbitrary distances 
in the defined granularity. The granularity is defined by the 
radius of estimated automatically based on distribution of the 
pixels in the COLD. The extracted mass feature from the 
granules defined by the radius values fed to Neural Network 
classifier for classification of 2D and 3D text images. The main 
advantage of this work is that it works well for the image without 
text information. The distribution of pixels in the COLD does 
not make much difference between 2D text and 2D objects in the 
images.  

A. Local Gradient Difference for Candidate Pixel Detection  

For the input images shown in Fig. 1(a), the proposed method 
obtains an absolute gradient image for 2D and 3D images as 
shown in Fig. 2, where it can be seen the pixels which represent 
edges are sharpen compared to the background pixels. Since the 
step, namely, Local Gradient Difference (LGD) requires the 
dominant pixel which represents edges in the images, the 
proposed method performs Max-Min clustering on absolute 
gradient images to detecting dominant pixels. For each pixel in 
the absolute gradient images, we define a 3×3 window and then 
the proposed method chooses Max value and Min values from 
the window. The values in the window are compared to with the 
Max and Min values. If the value is closest to Max value, it is 
classified into Max cluster else Min cluster. The pixels which 
classified into Max cluster are considered as dominant pixels as 
shown in Fig. 2(b) where we can see this process outputs almost 
all edge pixels for both 2D and 3D text images.  

 Again for the 3×3 window of each dominant pixels (white 
pixels), the proposed method computes LGD as defined in 



Equation (1), where the gradient difference is calculated using 
neighboring pixels values. Note that we consider gradient values 
in the absolute gradient images corresponding to dominant 
pixels for computing LGD. The effect of LGD can be seen in 
Fig. 2(c), where it can be noted that dominant pixels preserve the 
sharpness. With LGD values, the proposed method finds a 
change in local gradient difference which is called as Local 
Gradient Resultant (LGR) as defined in Equation (2). The results 
in Fig. 2(d) show that the LGR process increases the sharpness 
for the dominant pixels compared to the LGD results. Therefore, 
one can conclude that the LGR process widens the gap between 
edge pixels and background pixels in the images. In order to 
extract such edges pixels, the proposed method employs k-
means clustering with k=2 over LGR images, which outputs two 
clusters. The cluster which gives high mean is considered cluster 
with candidate pixels as shown in Fig. 2(e) where we can see all 
edge pixels are classified as candidate pixels. 

 

When we compare the results in Fig. 2(e) with the results in 
Fig. 2(b), unwanted background pixels are removed while edge 
pixels which represent boundary of the characters preserved.  

𝐿𝐺𝐷(𝑥, 𝑦) = ∑ ∑ {|𝐺(𝑖, 𝑗) − 𝐺(𝑥, 𝑦)|

𝑦+1

𝑗=𝑦−1

𝑥+1

𝑖=𝑥−1

}    ∀ (𝑥, 𝑦) ↔ 𝑀𝑀(𝑥, 𝑦) = 1  (1) 

Where G(x, y) denote absolute gradient image and MM(x, y) 

denotes Max cluster image.  

𝐿𝐺𝑅(𝑥, 𝑦) =  ∑ ∑ |𝐿𝐺𝐷(𝑖, 𝑗) − 𝐿𝐺𝐷(𝑥, 𝑦)|                            (2)

𝑦+1

𝑗=𝑦−1

𝑥+1

𝑖=𝑥−1

 

 

The steps for calculating LGD and LGR are shown in Fig. 
3 where then gradient difference is computed using neighboring 
gradient values. For instance, the value of 4 in the first cell of 
the LGD window is calculated by taking the absolute difference 
between |0-1| + |0-2| + |0-1| in gradient window. The value of 
the 0 in the first cell of the gradient window is considered as a 
center pixel to be replaced with the new value. Similarly, if we 
consider the value of 6 as a center pixel in the LGR window, it 
can be calculated by taking the absolute difference between |4-
3| + |4-8| + |4-3| in gradient window. If we consider the value of 
8 as center pixel in LGD, the LGD for this value is can 
calculated as defined equations in Fig. 3, which is the absolute 
difference between |2-0| + |2-1| + |2-2] + |2-1 + |2-0| + |2-1| + |2-
2] + |2-1| in gradient window. For calculating LGD values, the 
proposed method uses gradient values and for LGR values, the 
LGD values are used. It is expected the above steps should 
output the boundary points of characters and the objects in the 
images. Fig. 2(e) shows that most of the boundary points are 
detected irrespective of character and objects in the images. 
Therefore, one can argue that these steps work well for the 
images containing any object and text.  

 

B. COLD for Extracting Spatial Proximiy of Candidate Pixels  

When we look at the candidate pixels arrangements in Fig. 2(e), 
it is clear that the spatial proximity between the candidate pixels 
in the 2D image is close compared to the candidate pixels in 3D 
images. This is the cue for differentiating 2D and 3D images, 
which is the same for the images of any objects including text. 
To extract such observation, we propose to explore the concept 
of COLD (cloud of line distribution). COLD uses the distance 
between the candidate pixels and spatial coordinates to obtain a 
distribution in the polar domain as defined in Equation (3) and 

(b) Dominant pixels detection by the Max–Min clustering  

(c) Local Gradient Difference (LGD) images for 2D and 3D images 

(d) Local Gradient Resultant (LGR) images for 2D and 3D images 

(e) Max cluster results given by K-means clustering on LGR images. 

Fig. 2. Candidate pixels detection based on local gradient difference.  

(a) Absolute of gradient images for 2D and 3D text images   

𝐿𝐺𝐷(𝑀) = 𝑀′

=  |𝑀 −  𝐶1| +  |𝑀 −  𝐶2|

+  |𝑀 −  𝐶3| +  |𝑀 −  𝐶4|

+  |𝑀 −  𝐶5| +  |𝑀 −  𝐶6|  
+  |𝑀 −  𝐶7| +  |𝑀 −  𝐶8| =  8 

 𝐿𝐺𝑅(𝑀′) = 𝑀′′

=  |𝑀′ −  𝐿1| + |𝑀′ −  𝐿2|   
+  |𝑀′ −  𝐿3| +  |𝑀′ −  𝐿4|  
+  |𝑀′ −  𝐿5| +  |𝑀′ −  𝐿6|  
+  |𝑀′ −  𝐿7| +  |𝑀′ −  𝐿8| =  40 

Gradient Window                LGD Window                      LGR Window                

Fig. 3. Illustration for LGD and LGR for 3×3 Gradient window  



Equation (4), where 𝜃 is the angle between two pixels and r is 
the distance between two pixels. 

𝜃 =  tan−1 (
𝑦𝑖+1− 𝑦𝑖

𝑥𝑖+1− 𝑥𝑖
)                                (3) 

𝑟 =  𝑎𝑏𝑠(√(𝑦𝑖+1 −  𝑦𝑖)2 +  (𝑥𝑖+1 −  𝑥𝑖)2)           (4) 

Here (𝑥𝑖 , 𝑦𝑖)and (𝑥𝑖+1, 𝑦𝑖+1) denote the coordinates of a pair 
pixels. When we draw points for all the pairs in polar domain 
(𝜃, 𝑟 ) it results in a distribution.  

 

Since the distance between all the candidate pixels does not 
contribute to classification, the proposed method focuses on 
extracting the distance which represents the stroke width of 
characters and objects in the images. The proposed method 
considers each component in a candidate pixel image as a 
connected component as shown in Fig. 4(a) where we can see 
boundaries for each component in an image. Since small 
connected components do not contribute much for 
classification, we remove components that are smaller than five 
pixels. Our method finds centroid for each component by 
considering x and y coordinates of all the white pixels in the 
connected component. From each centroid of each component 

in the image, the proposed method traverses in 360 directions 
until it reaches the last boundary pixels of the connected 
component, which is considered as end stroke width points. 
From the end stroke width point, the proposed method retraces 
in reverse direction until it finds the transition either 1 to 0 or 0 
to 1, which is considered as begin stroke width point. This 
process is illustrated in Fig. 4(b), where it can be seen that 
directions from the centroid and the points which represents 
stroke width pair marked in red color for each direction. It is 
observed from Fig. 4(b) that the character “R” in the 2D image 
is considered as one connected component while the whole text 
line in the 3D image as one connected component. This is due 
to the presence of shadow and background pixels in 3D image. 
This reflects in the spatial relationship between the pixels and 
makes a difference between 2D and 3D images.  

The distance between the beginning and end stroke width 
points are considered as stroke width distance. The points of 
stroke width pairs are shown in Fig. 4(c) for 2D and 3D images, 
where we can observe the spatial distribution of pixels are 
different for 2D and 3D images. We draw points using angle 
and distances in the polar coordinate system, which results in 
COLD distribution as shown in Fig. 4(d), where one can see 
dense clusters at the center for 2D images and scattered clusters 
for 3D images. The proposed method extracts such observation 
by estimating mass features for each ring of radius, which will 
be discussed in the subsequent section.  

 

C. Mass Features Extracted from COLD for Classifiication  

After getting the COLD plot, we use it to calculate the Mass 
features using splits. To decide the radius of rings in COLD we 
use the mean distance of stroke pixels pairs in the image. The 
optimalnumber of rings is eight which is determined 
empirically based on the datasets we used. As defined in [19], 
mass(𝑥𝑎) for a ring 𝑎, where  𝑥𝑎 ∈ {𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛} is 
defined as a summation of a series of mass base weighted by 
p(a) over n rings, here {𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛} is the number of 
pixels in rings from range(1, 𝑛), where 𝑛 is equal to 8. The mass 
is defined as follows:  

𝑚𝑎𝑠𝑠(𝑥𝑎) = ∑(𝑛 − 𝑎) × 𝑝(𝑎)

𝑎−1

𝑘=1

+ ∑ 𝑎 × 𝑝(𝑎), 𝑎 ∈ (1, 𝑛)

𝑛

𝑘=𝑎

    (5) 

Where 𝑝(𝑎) is the probability of number of pixels in ring 𝑎 

𝑝(𝑎) =
𝑥𝑎

∑ 𝑥𝑖
𝑛
𝑖=1

  𝑎 ∈ (1, 𝑛) 

(a) Connected component labeling for candidate pixels images  

(b) Traversing in 360 directions to find stroke pixels for each connected 

component. Yellow color denotes direction and red pixel denote stroke 

pixels.   

(c) Stroke pixels for the 2D and 3D images  

(d) Cold distribution for the stroke pixels of 2D and 3D images. 

Fig. 4. Studying spatial distribution of stroke pixels through COLD.   

Fig. 5.  Mass features for 2D and 3D images.  



Finally, we combine all mass features for all rings 𝑎 {𝑎 ∈ (1, 𝑛)} 

to obtain the feature vector for the input image. The line graph of 

the normalized feature vector for 2D and 3D image is shown in 

Fig.5, where it can be seen that the mass features have the ability 

to distinguish 2D and 3D images.  
For the classification of 2D and 3D texts, we use a Neural 

Network by passing extracted features into the network. The 
structure of the proposed network is in Fig. 6. It has 6hidden 
dense layers. The Input layer has 8 features and the final output 
layer has 1 feature {0 for 2D and 1 for 3D}. We use the Rectified 
linear activation function “ReLU” for all hidden layers and 
Sigmoid [20] activation function for the final layer. Dropout 
with a drop rate of 10% in between the layers is used to reduce 
overfitting. Binary cross-entropy loss(L) is estimated [21] as 
defined in Equation (6), where Pr(y) is the probability predicted 
and ‘y’ is the label for a total number of ‘n’ samples. Adam [22] 
optimizer with a learning rate of 0.005 is used during the training 
process and the batch size used is 12 during training. Each model 
is trained for a maximum of 100 epochs with a model checkpoint 
to store the best-trained model using Keras framework. For 
training we used 80% of the samples chosen randomly, and  for 
testing the remaining20% of the samples. The details of the 
proposed neural network are shown in Fig. 6.  

𝐿(𝑞) =  −
1

𝑛
∑(𝑦𝑘

𝑛

𝑘=1

. log(𝑃𝑟(𝑦𝑘)) + (1 − 𝑦𝑘). log (1 − 𝑃𝑟(𝑦𝑘)))          (6) 

 

IV. EXPERIMENTAL RESULTS  

Since the problem of 3D text image classification from 2D 
text image is new, we collect our dataset from different 
resources, such as YouTube, movie posters, and the internet. To 
choose 3D images, we check whether the image exhibits 
shadows and depth. If an image contains such an effect, it is 
considered as 3D.  Otherwise it is considered as 2D.The 
collected images include complex backgrounds, low resolution, 
low contrast, font, font-size variations, arbitrarily shaped 
characters. and some extent to distortion. To test the robustness 
of the proposed method, we also choose 3D images from the 
benchmark datasets of natural scene images, namely, ICDAR 
2013, ICDAR 2015, ICDAR 2017 MLT, and COCO-Text if the 
dataset contains any 3D images. For 2D image collection, we 
choose randomly from the same datasets. This dataset is 
considered as a standard dataset for experimentation at the 
image level.  

At the same time, to evaluate the proposed method at the 
text line level, the detected text lines from our dataset and the 
same aforementioned natural scene datasets are considered for 
experimentation. In addition, we also use the text lines that are 
used in [15] for 2D and 3D text line classification. This dataset 
contains examples of text with varying shadows, font sizes and 
backgrounds. This dataset is used for classifying text line 
images through shadow detection to improve text recognition. 
Similarly, to show the proposed method does not depend ont 
ext for the classification of 2D and 3D images, we choose 2D 
and 3D images without text information from [24] where 
natural scene images are used for categorizing 15 kinds of 
scenes This dataset consists of images with 2D and 3D office, 
kitchen, living room, mountain, etc. Sample images for each 
dataset including our dataset and images of non-text 
information are shown in Fig. 7(a)-Fig.7(b), where we can see 
all the images exhibit different complexities in terms of 
foreground (text or object) and background variations. 

 

In summary, the proposed work comprises 1056 text 
images, 3456 text line images, and 500 images without text 
information (non-text images) for evaluation. Details of the 
sizes of 2D and 3D classes for each dataset can be seen in Table 
I. With this information, we can infer that the considered dataset 
is fair enough for evaluating the proposed and existing methods 
for the classification of 2D and 3D images of different types at 
different levels. 

Table I. Details of different types of dataset for evaluation.  
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 Fig. 6. Architecture of Neural Network Classifier 
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Our dataset                           ICDAR 2013                      ICDAR 2015           

Fig. 7. Sample images of our, natural scene and non-text images datasets. 

All the sample images are classified successfully by the proposed 

method.  

ICDAR 2017MLT               COCO Text                    Non-Text Image  

(b) 3D images 

Our dataset                           ICDAR 2013                      ICDAR 2015           

ICDAR 2017MLT               COCO Text                   Non-Text Image  

(a) 2D images 

 



Datasets Type 2D 3D Total 

Our dataset Image 400 400 800 

Standard Natural Scene Image 130 126 256 

Our Line 513 505 1018 

IIIT5k Line 317 305 632 

COCO-Text Line 472 530 992 

ICDAR 2013 Line 123 74 197 

ICDAR 2015 Line 111 90 201 

Zhong et al. [15] Line 200 216 416 

Ali et al. [24] Non-Text Images 250 250 500 

 
We implemented the following existing methods for 

comparative study with the proposed method to show that the 
proposed method is effective. Xu et al. [14] that explores 
gradient direction for classifying 2D and 3D images having text 
information. Zhong et al. [15] that explores shadow detection 
information for 2D and 3D image classification. The motivation 
to choose the above two methods is that the objective of the 
methods is the same as the proposed method. That is the 
classification of 2D and 3D images for improving text detection 
and recognition performance. The same two existing methods 
are used for classifying images at the text line level also. In the 
case of the text line level, we run the text detection method [1] 
to obtain text lines from 2D input images and we segment text 
lines manually from 3D images. The segmented text lines are 
input for classification.  

To show the usefulness of the proposed classification at the 
image level, we run the following text detection methods before 
and after classification. For the before classification 
experiments, the methods consider both 2D and 3D images 
together as the input for classification, while for after 
classification experiments, images of individual classes are 
considered as the input for text detection. Note that for before 
classification experiments, the text detection methods are 
trained on both 2D and 3D images whilst for after classification, 
the methods are trained on images of respective classes. Wang 
et al. [1], Liu et al. [8], and Liao et al. [13] explore deep learning 
for text detection in natural scene images. The reason to choose 
the above-mentioned methods is that implementations are 
publicly available and these are the state-of-the-art methods. It 
is expected that the text detection methods should report worse 
results before classification and better results after 
classification. This is expected because the complexity of the 
classification problem increases when we consider both 2D and 
3D images together as the input for text detection, whereas the 
complexity is reduced when we classify images as 2D and 
3D.In the same way, to show the usefulness of the proposed 
classification, we run two recognition methods, namely, 
ASTER [6] and MORAN [7], which employ deep learning 
models for text of different complexities. These methods are 
robust to complex backgrounds, low resolution, low contrast, 
arbitrarily shaped characters and orientations similar to our 
proposed approach. In addition, the implementations software 
would be made available to the public. Since the dataset is small 
from the standpoint of deep learning, we use augmentation 
techniques to increase the number of samples by generating 
synthetic images with different operations, such as rotation, 
scaling, and shear transform. 

For evaluating the performance of the proposed and 
existing methods for classification, we usethe well-known 
measures, namely, confusion matrix and average classification 
rate. The classification rate is defined as the number of images 
classified correctly by the proposed method divided by the 
actual number of images. The average classification rate is 
defined as the mean of diagonal elements of the confusion 
matrix. For text detection experiments, we use standard F-
measures, which is the harmonic mean of recall and precision 
for evaluation. For recognition experiments, we use the 
recognition rate, which is defined as the number of characters 
recognized correctly divided by the actual number of 
characters. For training the proposed method as described in the 
Proposed Methodology section, the following values are 
determined. For the text detection experiments, each model is 
trained for 10 epochs with an initial learning rate of 0.0005 and 
a batch size of 8. For the text recognition experiments, each 
model is trained for 15 epochs with 0.01 as an initial learning 
rate and with 16 as the batch size. While training, we use 
checkpoints to store the best performing model for later use 
during testing. 

A. Ablation Study 

To analyze the contribution and effect of each step involved 
in the proposed method, we conduct the following experiments 
on our dataset. In the proposed work, Local Gradient Difference 
(LGD), Cloud of Line Distribution (COLD) and Mass features 
are the key steps.  To assess the contribution of each key step, 
generate a confusion matrix, and calculate theaverage 
classification rate using our dataset as reported in Table II. For 
experiments without the LGD step, the proposed method 
considers normalized gradient images as input for the K-means 
clustering to detect candidate pixels, and then the same steps are 
used for classification. For experiments without COLD, the 
proposed method considers stroke pixels given by directions as 
input for Mass feature extraction and then classification. For 
experiments with density, the proposed method counts the 
number of pixels in each ring instead of mass estimation for 
classification. The results for each key steps are reported in 
Table II where we can confirm from the average classification 
rate that each key step contributes to achieving high results 
(81.875%) in terms of average classification rate.However, it is 
also noted that the key steps alone are not enough to achieve 
better results as the proposed method.   

Table II. Confusion matrix and average classification rate for the 
key steps of the proposed method on our dataset at image level(in %). 

Classes 

Proposed without 

LGD 

Proposed without 

COLD 

Proposed with 

density 

Proposed 

Method 

2D 3D 2D 3D 2D 3D 2D 3D 

2D 61.25 38.75 76.25 23.75 77.5 22.5 85.0 15.0 

3D 47.5 52.5 41.25 58.75 27.5 72.5 21.25 78.75 

Average 56.875 67.5 75.0 81.875 

 We also conducted a few more experiments to assess the 
impact of the neural network classifier used in the proposed 
method. In order to know the effect of the proposed features, the 
extracted features are fed to a state-of-the-art deep convolution 
neural network, namely, MobileNetV2 [23] with Adam 
optimizer, learning rate = 0.01, and batch size = 8, which results 
in Experiment-1. Similarly, to analyze the effect of the proposed 
Neural Network classifier, the extracted features are fed to a 



conventional SVM classifier for classification, which results in 
Experiment-2. To test the contribution of the Adam optimizer 
used in the proposed classifier, the experiments are conducted 
by replacing Adam optimizer with SGD [25], which results in 
Experiment-3. In the same way, we also examine 5 fold-cross-
validation, which results in Experiment-4. Classification results 
along with average classification rates of all the four different 
experiments are reported in Table III. It is observed from Table 
III that the experiments just described show poor results 
compared to the proposed method. This demonstrates that the 
steps and the components used in the proposed method are 
effective and contribute significantly to classification.  

Table III. Experiments for Ablation study for the proposed method using our 
dataset (in %). 

Experiments  Exp-1 Exp-2 Exp-3 Exp-4 Proposed 

Classes 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 

2D 78.2 21.75 64.5 35.5 80.4 19.6 81.2 18.7 85.0 15.0 

3D 28.7 71.25 39.0 61.0 24.2 75.8 22.5 77.5 21.2 78.7 

Average 74.7 62.7 78.1 79.3 81.8 

B. Experiments on Classification  

Quantitative results of the proposed and existing methods for our 
and standard datasetsat image level are reported in Table IV. It 
is noted from Table IV that for both the datasets, the proposed 
method achieves the best at average classification rate compared 
to existing methods. However, the proposed method scores low 
results for the standard dataset compared to our datasets. This is 
because the images chosen from the standard dataset are more 
diversified compared to the images of our dataset. The same is 
true for existing methods also as these methods report low 
results for standard dataset. When we compare the results of 
Zhong et al. and Xu et al. the Zhong et al. is better for our dataset 
and poor for the standard dataset compared the Xu et al. This is 
due to the images of standard dataset do not have shadow 
information while images of our dataset have shadow 
information. This is valid because Zhong et al. works based on 
shadow information in the images. On the other hand, since Xu 
et al. works based on gradient information, it is sensitive to the 
complex background. Therefore, Xu et al, reports poor results 
for standard dataset compared to our dataset.  

To evaluate the method at the text line level, we generate 
confusion matrices and calculate the average classification rate 
for our dataset, as well as the standard and Zhong et al. datasets 
as reported in Table V and Table VI, respectively. Our method 
achieves the best average classification rate for all three datasets 
compared to the existing methods. As expected, the proposed 
method scores better results at the text line level as opposed to 
the image level. However, when we look at the outcomes of the 
existing methods at the image and text line levels, the results are 
not consistent. This is due to the thresholds and inherent 
limitations of the methods. On the other hand, in case of the 
proposed method, since the features are robust to different types 
of images, it performs well at both the image and text line levels. 
It is noted from Table VI that Zhong et al.’s method reports poor 
results for their dataset. This is due to adjusting the many 
thresholds used in the method. Since their source code is not 
available, we implemented the method and used the same 
procedure described earlier to set the thresholds for the 
comparative study we present in this work.  

Table IV. Confusion matrix and average classification rate of the proposed and 

existing methods on our and standard datasets at image level(in %). 

Dataset Our dataset-image level  Standard dataset-image level 

Methods 
Zhong et 

al. 
Xu et al. Proposed 

Zhong et 

al. 
Xu et al. Proposed 

Classes 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 

2D 76.5 23.5 58.7 41.3 83.0 17.0 52.0 48.0 56.4 33.6 78.4 21.6 

3D 41.5 58.5 31.9 68.1 22.0 78.0 42.4 57.6 39.2 60.8 26.5 72.5 

Average 67.5 63.4 80.5 54.8 58.6 75.45 

Table V. Confusion matrix and average classification rate of the proposed and 

existing methods on our and standard datasets at line level(in %). 

Dataset Our dataset –Text line level  Standard dataset-Text line level  

Method

s  
Zhong et al.   Xu et al.  Proposed  Zhong et al.   Xu et al.   

Proposed  

Classes  2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 

2D 32.7 67.2 66.2 33.7 91.1 8.9 53.8 46.1 46.6 53.4 87.7 12.3 

3D 46.3 53.6 28.3 71.6 11.2 88.8 32.8 67.2 31.2 68.8 16.5 83.5 

Average 43.2 70.48 89.95 60.53 57.7 85.6 

Table VI. Confusion matrix and average classification rate of the proposed 

and existing methods on Zhong et al., and Ali et al, Non-Text Image 

datasets(in %). 

Dataset Zhong et al dataset [15] 
Ali et al., Non-Text Image 

dataset [24] 

Methods  
Zhong et 

al.   
Xu et al.  Proposed  Proposed Method  

Classes  2D 3D 2D 3D 2D 3D 2D 3D 

2D 67.0 23.0 74.8 25.2 92.9 7.1 82.0 18.0 

3D 28.4 65.6 26.0 64.0 12.8 87.2 24.0 76.0 

Average 66.3 69.4 90.05 78.0 

Since the proposed method does not depend on the text in 
an image when making the 2D/3D classification, we also tested 
it on images without text. For this experiment, we use the 
images that are used in [24] where 2D and 3D non-text images 
are used for categorizing 15 scenes, as reported in Table VI. 
The results on Non-Text Images show the proposed method is 
able to achieve promising results compared to the result on text 
images. Therefore, we can conclude that our method classifies 
2D and 3D images of different types, and hence it is a text 
independent method. However, the results of non-text images 
are lower than the results of text images. This is because when 
the image contains a very little effect of shadow and depth 
information due to large variations of object shapes, the 
performance degrades. This is not a major setback of the 
proposed work because the primary goal of the proposed work 
is to classify images with text information. Note that the 
existing methods are not used for comparative study with the 
proposed method on this dataset because these methods require 
an image with text or text lines but not the images without text.  

C. Text Detection and Recognition Experiments for 

Validating The Proposed Classification  

As discussed earlier, to show the usefulness of the proposed 
classification method, we perform text detection and 
recognition experiments before and after classification. For text 
detection experiments, the full images are input while for text 
recognition experiments, text lines are input. Quantitative 
results of different text detection and recognition methods for 
our and standard datasets are reported in Table VII and Table 
VIII, respectively. It is observed from Table VII and Table VIII 
that the performance of text detection and recognition methods 
improves significantly after classification compared to before 



classification for both the datasets. This shows that the 
proposed classification contributes to improving text detection 
and recognition performance for 2D and 3D images. At the 
same time, we can also conclude that single methods are not 
feasible for achieving better results for 2D and 3D images.  

Table VII. Text detection performance in terms of F-measure of 

different methods for our and standard full dataset at image level 

before and after classification. BC denotes before classification and 

AC denotes after classification.   

Methods 

Our Dataset-image level  Standard dataset-image level  

BC AC BC AC 

2D + 3D 2D 3D Avg 2D + 3D 2D 3D Avg 

PSEnet [1] 67.9 73.3 66.9 70.1 73.3 88.6 64.0 76.3 

FOTS [8] 59.2 70.3 56.9 63.6 64.3 75.1 60.5 67.8 

DB [13] 60.5 68.2 59.1 63.6 66.6 80.8 61.4 71.1 

Table VIII. Text recognition performance in terms of character 

recognition rate of different methods for our and standard dataset at 

line levels before and after classification. BC denotes before 

classification and AC denotes after classification.   

Methods 

Our Dataset-Text line level Standard dataset-Text line level  

BC AC BC AC 

2D + 3D 2D 3D Avg 2D + 3D 2D 3D Avg 

ASTER [6] 79.0 97.0 85.7 91.3 88.5 96.1 85.4 90.7 

MORAN[7] 87.2 94.1 87.6 90.8 89.7 96.0 86.4 91.2 
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V. CONCLUSION AND FUTURE WORK 

In this work, we have proposed a new method for the 
classification of 2D and 3D text in natural scene images. The 
proposed method employs a local gradient difference for 
detecting candidate pixels from input images. The COLD 
approach used for representing the spatial relationship between 
candidate pixels in 2D and 3D images. The distribution 
provides dense clusters at the center for 2D text images while 
scattered at center for 3D images. The proposed method 
estimates mass for extracting such observations from each ring 
over the COLD distribution. The extracted mass features are fed 
to a Neural Network classifier for the classification of 2D and 
3D images. Experimental results on our and standard datasets 
at image and text line levels show that the proposed method 
outperforms the existing methods in terms of average 
classification rate. The results of the non-text images show that 
the proposed method is content-independent. The experiments 
on text detection and recognition show that the proposed 
classification is useful for improving text detection and 
recognition performance. However, there is some limitation as 
discussed in the experimental section. Our next target is to 
investigate new features for improving the proposed method 
classification.  
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