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Introduction

• Current Indian Scenario
• Lack of adequate doctors
• Conventional Vs. computerized

diagnosis
• Our work
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Block Diagram of Proposed Method

2019 Second Interna0onal Conference on Advanced Computa0onal and Communica0on Paradigms (ICACCP)

4

ROI IN & ZC Model b [0, 1, 0]

T1 -
weighted CE-

MRI image

Segmented 
Tumor (256 

* 256)

Segmented 
Tumor (512 

* 512)
Normalized 

Image

Augmented 
Images

Annotated 
Tumor 
Mask

SE-ResNet-
101 CNN One hot 

Encoded 
Output



Dataset Description 
• Source of Data

§ Nanfang Hospital, Guangzhou, China, and General Hospital, 
Tianjin Medical University, China(2005 to 2010)

• Full Description
§ It contained 3064 T1-weighted contrast-

enhanced images from 233 pa;ents: 
ümeningioma (708 slices)
üglioma (1426 slices)
üpituitary tumor (930 slices). 
üThe dimension of each MRI slices: 512 × 512 pixels
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Data Pre-processing

• ROI segmentation
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Data Pre-processing

• ROI segmentation
• Intensity Zero-centering and
Normalization
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Data Pre-processing

• ROI segmentation
• Intensity Zero-centering and Normalization

• Data Augmentation
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Preprocessed Images
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Proposed Methodology
• Deep Learning Model : ResNet-101
– Subtraction of input features.
– Shortcut connections - directly connecting the
input of kth layer to (k + x)th layer.

– Resolves the problem of vanishing gradients.
– Weights amplifies the layer next to the present
one.

– 101-layer Residual Network - modified version of
the 50-layer ResNet.
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Block Diagrams
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Squeeze and Excitation block with 
ResNet

• Max Pooling - used to average the feature maps in a
spatial plane.

• Two fully connected layers:
– with ReLU and Sigmoid activations are used for

excitation operation.

• Stacking the SE blocks.
• SE-blocks combined with ResNet architecture, has
performed outstandingly good in classifying the
brain tumors.
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Training of Model 
• Trained from scratch and finely tuned to just fit.
• Total data size = 7771:
– 3064 original samples
– 4707 samples of augmented data
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Training of Model 
• Trained from scratch and finely tuned to just fit.
• Total data size = 7771:
– 3064 original samples
– 4707 samples of augmented data

• Training duration = 7 hours
(batch size = 5 for 26,094 iterations):

– 12,196 iterations on original samples
– 13,898 iterations on augmented samples
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Experimental Results
• Performance Metrics used for Evaluations are:

– Categorical Accuracy i.e Accuracy
– Specificity
– Sensitivity
– Cross-entropy loss
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Experimental Results
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Comparison of Proposed Method 
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Conclusion

• State-of-the-art method
• Handy tool to doctors
• Other Applications
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Future Scope

• Extend to 3-dimensional MRI data
• Covering more number of classes of tumors. 
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